Interaction between Dicyclomine and Potassium citrate
Major
Synergy
ID | DDInter543 and DDInter1498 |
Interaction | Concomitant use of agents with anticholinergic properties (e.g., antihistamines, antispasmodics, neuroleptics, phenothiazines, skeletal muscle relaxants, tricyclic antidepressants, the class IA antiarrhythmic disopyramide) may potentiate the risk of upper gastrointestinal injury associated with oral solid formulations of potassium citrate. The proposed mechanism involves increased gastrointestinal transit time due to reduction of stomach and intestinal motility by anticholinergic agents, thereby creating a high localized concentration of potassium ions in the region of a dissolving tablet or capsule and increasing the contact time with GI mucosa. Solid formulations of potassium chloride have been associated with upper GI bleeding and small bowel ulceration, stenosis, perforation, and obstruction. |
Management | The use of oral solid formulations of potassium citrate is considered contraindicated in patients receiving agents with anticholinergic properties at sufficient doses to exert anticholinergic effects. A liquid formulation of potassium citrate should be considered. Patients prescribed a solid oral formulation should be advised to discontinue potassium therapy and contact their physician if they experience potential symptoms of upper GI injury such as severe vomiting, abdominal pain, distention, and gastrointestinal bleeding. |
References | |
Alternative for Dicyclomine |
A03A
|
Alternative for Potassium citrate |
A12B
|
Potential Metabolism Interactions
Substrate-Substrate Interaction:If more than one drug is metabolized by the same CYP, it is possible that its metabolism is inhibited because of the competition between the drugs. That means, it can be useful to lower the dosage of the drugs in the drug-cocktail because they remain longer in the organism than in monotherapy.
Inhibitor-Inhibitor Interaction:Combining two or more inhibitors of one CYP, should be compensated by lowering the dosage of these drugs because the metabolism is reduced and the drugs remain longer in the organism than in monotherapy. Not adapting the dosage bears the risk of even more side effects.
Inhibitor-Substrate Interaction:Combining drugs that have inhibitory effect and are substrates of one particular CYP, should be compensated by lowering the dosage. They rest longer in the organism than in monotherapy. Not adapting the dosage bears the risk of even more side effects.